Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the ‘urban facilitation model’ suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non‐adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reducedNelinked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.more » « less
-
ABSTRACT A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta‐analysis of 64 studies from 41 publications to determine if temporal resource partitioningviavariation in the timing of a key life‐history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life‐history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co‐occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioningviavariation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger‐sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivisionviavariation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition.more » « less
-
Abstract An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly,Rhagoletis pomonella(Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis(Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domesticaBorkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host‐associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple‐infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life‐history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasiiLindl.) and an introduced species (Crataegus monogynaJacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi‐directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply thatR. pomonellacan both possess and retain extensive‐standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.more » « less
An official website of the United States government
